SOLVE QUADRATIC EQUATIONS - GRAPHING

LEARNING GOALS

 Review how to solve quadratic equations and graph the roots (x-intercepts).

REVIEW: FACTORING

Factor the following.

$$x^{2} + 9x + 14$$

$$7 \times 2 = 14$$

$$7 + 2 = 9$$

$$= (x + 7)(x + 2)$$

$$4x^{2} - 12x + 9$$

$$-6 \times -6 = 36$$

$$-6 + -6 = -12$$

$$-4 \times 2 - 6 \times -6 \times 4 = 9$$

$$-2 \times (2 \times -3) - 3(2 \times -3)$$

$$= (2 \times -3)^{2}$$

REVIEW: SOLVING QUADRATIC EQUATIONS

Solve the following equations which are already factored.

$$x+7=0$$
 $x+2=0$ $x=-2$

(x + 7)(x + 2) = 0

$$3 \times -5 = 0$$
 $2 \times +3 = 6$
 $\times = \frac{5}{3}$ $\times = -\frac{3}{2}$

(3x-5)(2x+3)=0

Solve the following equations by converting to factored form.

$$x^{2} + 5x + 6$$

$$3 \times 2 = 6$$

$$3 + 2 = 5$$

$$= (x + 3)(x + 2)$$

$$x + 3 = 0 \qquad x + 2 = 6$$

$$x = -3 \qquad x = -2$$

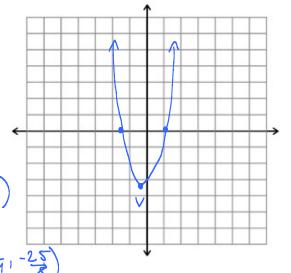
$$4x^{2} - 12x = -9$$

$$4x^{2} - 12x + 9 = 0$$

$$(2x - 3)^{2} = 0$$

$$2x - 3 = 0$$

$$x = \frac{3}{2}$$


REVIEW: SKETCHING

Graph the following equation using the x-intercepts and vertex.

$$y = (2x+3)(x-1)$$

$$2x + 3 = 0$$
 $x - 1 = 0$
 $x = \frac{-3}{2}$ $x = 1$

$$h = \frac{1}{2} = \frac{1}{4} = \frac{1}{2} =$$

USE FACTORING TO GRAPH A QUADRATIC EQUATION

Graph the following using the x-intercepts.

$$y = -x^2 + 5x - 6$$

$$=-\left(x^2-5x+6\right)$$

$$= -(x-3)(x-2)$$

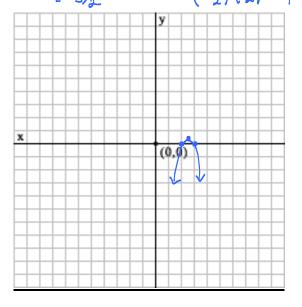
$$x=3$$
 $x=2$

$$y = -x + 3x = 0$$

$$= -(x^{2} - 6x + 6)$$

$$= -(x - 3)(x - 2)$$

$$x - 3 = 0 \quad x - 2 = 0$$

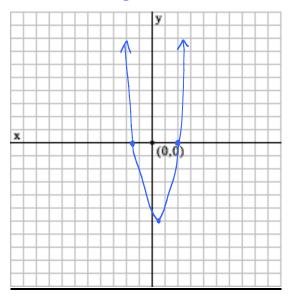

$$x = 3 \quad x = 2$$

$$h = \frac{-+5}{2} \quad K = -(\frac{5}{2} - 3)(\frac{5}{2} - 2)$$

$$= 5/2 \quad x = 3$$

$$x = 2$$

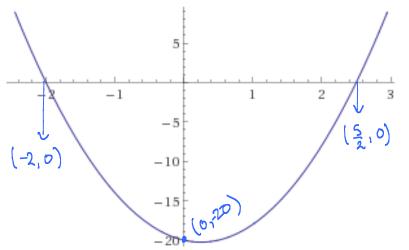
$$x = 3 \quad x = 3$$


$$y = 2x^2 - x - 6$$

$$\frac{-4}{-4} \times \frac{3}{3} = -12$$

$$= 2 \times (x - 2) + 3(x - 2)$$

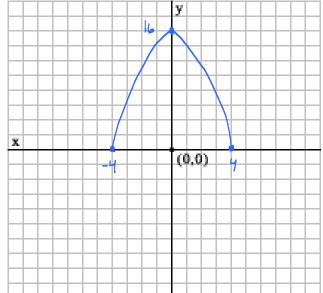
$$=(x-2)(2x+3)$$


$$x = 2$$
 $x = -\frac{3}{2}$

USE THE GRAPH TO FIND THE EQUATION

Using the x-intercepts and vertex, find the factored and standard form of the quadratic equation shown on the graph. (Use only

fractions - no decimals!)



y =
$$a(x-r)(x-s)$$

= $a(x-\frac{5}{2})(x+2)$
= $a(2x-5)(x+2)$
Use $P(0,-20)$ to
find a
-20 = $a(2(0)-5)(0+2)$
 $a = 2$
 $y = 2(2x-5)(x+2)$
 $y = 2(2x^2+4x-5x-10)$
 $y = 4x^2-2x-20$

APPLYING TO WORD PROBLEMS

1. To commemorate the 100th anniversary of the Newtonville Fair, an entrance arch will be built. The design engineer uses the

equation $h = -d^2 + 16$ to model the arch, where h is the height, in meters, above the ground and d is the horizontal distance, in meters, from the centre of the arch.

a. How wide and how tall is the arch?

$$0 = -d^2 + 16$$
 $d^2 = \sqrt{b}$
 $d = \pm 4$
 $V(0, 16)$
8m mide and 16m tall.

b. For what values of d and h is the relation valid? Explain.

d is valid between -4 and 4 -> sides of thearch h is valid between 0 and 16 -> top and bottom.

c. If a width of 2.5 m is needed per line-up at the entrance, how many line-ups can there be?