LEARNING GOALS

- Review how to solve quadratic equations and graph the roots (x-intercepts).
REVIEW: FACTORING
Factor the following.

$$
\begin{array}{ll}
x^{2}+9 x+14 & 4 x^{2}-12 x+9 \\
\frac{7}{7} \times \underline{2}=14 & \frac{-6}{2}=9 \\
\underline{2}+\underline{-6}=36 \\
=(x+7)(x+2) & \underline{-6}+\underline{-6}=-12 \\
& =4 x^{2}-6 x-6 x+9 \\
& =2 \times(2 x-3)-3(2 x-3) \\
& =(2 x-3)^{2}
\end{array}
$$

REVIEW: SOLVING QUADRATIC EQUATIONS
Solve the following equations which are already factored.

$$
\begin{array}{cccc}
(x+7)(x+2)=0 & (3 x-5)(2 x+3)=0 \\
x+7=0 & x+2=0 & 3 x-5=0 & 2 x+3=0 \\
x=-7 & x=-2 & x=\frac{5}{3} & x=\frac{-3}{2}
\end{array}
$$

Solve the following equations by converting to factored form.

$$
\begin{array}{ll}
x^{2}+5 x+6 & 4 x^{2}-12 x=-9 \\
\frac{3}{3} \times \underline{2}=6 & 4 x^{2}-12 x+9=0 \\
\frac{3}{2}+\underline{2}=5 & (2 x-3)^{2}=0 \\
=(x+3)(x+2) & 2 x-3=0 \\
x+3=0 \quad x+2=0 & x=\frac{3}{2} \\
x=-3 & x=-2
\end{array}
$$

## REVIEW: SKETCHING

Graph the following equation using the x -intercepts and vertex.

$$
\begin{array}{rl}
y & =(2 x+3)(x-1) \\
2 x+3=0 & x-1=0 \\
x & =\frac{-3}{2} \\
h & x=1 \\
h & =\frac{r+3}{2} \\
=-\frac{1}{4} & \left.=\left(\frac{5}{2}\right)\left(-\frac{1}{4}\right)+3\right)\left(-\frac{1}{4}-1\right) \\
& =\frac{-25}{8} \quad V\left(-\frac{1}{4}, \frac{-25}{8}\right)
\end{array}
$$



## USE FACTORING TO GRAPH A QUADRATIC EQUATION

Graph the following using the x -intercepts.

$$
\begin{aligned}
& y=-x^{2}+5 x-6 \\
&=-\left(x^{2}-5 x+6\right) \\
&=-(x-3)(x-2) \\
& x-3=0 \quad x-2=0 \\
& x=3 \quad x=2
\end{aligned}
$$

$$
h=\frac{r+5}{2} \quad K=-\left(\frac{5}{2}-3\right)\left(\frac{5}{2}-2\right)
$$

$=5 / 2 \quad=-\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}$


$$
\begin{aligned}
& y=2 x^{2}-x-6 \\
& \frac{-4}{\frac{-4}{3}+\frac{3}{3}=-12 \quad}=-1 \quad h=\frac{1}{4} \\
& =2 x^{2}-4 x+3 x-6 \quad k=\frac{-49}{8} \approx-6.1 \\
& =2 x(x-2)+3(x-2) \\
& =(x-2)(2 x+3) \\
& x=2 \quad x=\frac{-3}{2} \\
& \qquad \\
& \hline
\end{aligned}
$$

USE THE GRAPH TO FIND THE EQUATION
Using the x-intercepts and vertex, find the factored and standard form of the quadratic equation shown on the graph. (Use only fractions - no decimals!)


$$
\begin{aligned}
y & =a(x-r)(x-5) \\
& =a\left(x-\frac{5}{2}\right)(x+2) \\
& =a(2 x-5)(x+2)
\end{aligned}
$$

Use $P(0,-20)$ to find $a$

$$
\begin{aligned}
& -20=a(2(0)-5)(0+2) \\
& a=2 \\
& y=2(2 x-5)(x+2) \\
& y=2\left(2 x^{2}+4 x-5 x-10\right) \\
& y=4 x^{2}-2 x-20
\end{aligned}
$$

## APPLYING TO WORD PROBLEMS

1. To commemorate the 100th anniversary of the Newtonville Fair, an entrance arch will be built. The design engineer uses the equation $h=-d^{2}+16$ to model the arch, where $h$ is the height, in meters, above the ground and $d$ is the horizontal distance, in meters, from the centre of the arch.
a. How wide and how tall is the arch?

$$
\begin{aligned}
0 & =-d^{2}+16 \\
\sqrt{d^{2}} & =\sqrt{16} \\
d & = \pm 4 \quad V(0,16)
\end{aligned}
$$

8 m wide and 16 m tall.
b. For what values of $d$ and $h$ is the relation valid? Explain.
$d$ is valid between -4 and $4 \rightarrow$ sides of The arch $h$ is valid between 0 and $16 \rightarrow$ top and bottom.
c. If a width of 2.5 m is needed per line-up at the entrance, how many line-ups can there be?

$$
\frac{8 \mathrm{~m} \text { wide }}{2.5 \mathrm{~m} \text { wide/line }} \approx 3 \text { lines }
$$

## HOMEFUN ©

